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We report an extension to our modified Monte Carlo simulation technique to model coherent spin effects
(such as CIDEP) in spurs containing one or two pairs of neutral radicals under the influence of an applied
magnetic field. The motivation for choosing such a system is to investigate whether it is possible to glean
information about the initial distribution of the particles or the initial spin state of the spur from the simulated
polarizations. An analysis of the system based upon the adiabatic approximation provides qualitative insight.
However, further examination indicates that while it is possible to obtain explicit information about the initial
spin state from the polarizations, the same does not appear to be true for the spatial configuration. The results
for a two-pair spur are very different from those obtained for a single pair. To determine whether the two-
pair polarizations can be explained in terms of pairwise interactions, and to mask the effects of averaging
inherent in Monte Carlo simulations, single realizations of the spur evolution were performed. These indicate
that at short times (<100 ps) the polarizations are induced in a complicated manner through the close proximity
of all four particles, while at longer times successive two-body encounters are responsible.

1. Introduction

It has been established1 that more than 70% of the energy
lost from a fast charged particle to a condensed medium is
localized in events of less than 100 eV. Each energy deposition
event produces an isolated cluster (“spur”) which typically
comprises one or two ionization events and a similar number
of excitation events.2 The clusters therefore contain a small
number of correlated ions, electrons, and neutral radicals, whose
unpaired spins confer additional spin control on the diffusion-
controlled reactions occurring in the spur.

In a typical radiolysis event the primary interaction with the
fast electron ionizes the molecule and the secondary (slow)
electron produced proceeds to ionize or excite further molecules
in the vicinity. These secondary events are generally in close
proximity to the primary event because the low-energy electron
has a high inelastic cross section.

In the primary event the optical approximation is expected
to be obeyed to a high degree of accuracy,3 yielding a radical-
ion pair in a singlet state. Regardless of the complexity of the
secondary interactions, the overall spin state of the cluster of
radicals produced must be conserved; thus, if∆S ) 0 for the
original event, the vector sum of all the spins in the spur must
be zero at time zero.4 During the secondary interactions
exchange processes are likely to be important, leading to the
production of triplet radical pairs, but these are always subject
to the constraint that the spur is singlet-correlated overall. Our
previous investigations5-8 have shown that the chemistry of the
radical reactions can be profoundly affected by the nature of
these secondary interactions.

The role of spin in the kinetics of radiation tracks has been
of interest for over 20 years,9-11 while experimental manifesta-
tions of spin effects following irradiation, such as quantum beats
in the recombination fluorescence12,13and polarizations (CIDEP)
in radicals escaping recombination in the spur,14,15 have also
been reported.

Some theories have been proposed to explain and predict
these spin effects,16-19 but these are restricted to a single pair
of radicals. The standard approach for investigating spin effects
in photochemistry utilizes the stochastic Liouville equation
(SLE20). Although the SLE can formally be extended to larger
systems, the memory and storage requirements make this
computationally unfeasible. Additionally, there are severe
difficulties involved in the solution of many-body diffusion
problems. It is clear that a generalized method capable of
handling larger spurs is required for a complete description of
the nonhomogeneous kinetics of a radiation track, since the
multibody effects associated with the more densely ionized
“track-ends”21,22 are also known to be significant in the
chemistry of irradiated systems. Low-energy (100-5000 eV)
secondary electrons in low-LET tracks (e.g. from hard X-rays
or γ-rays) account for 30-50% of the dose23 and are primarily
responsible for the lethality of such radiations in cellular
systems.24,25

We have previously proposed8 a method which has the
potential to overcome the limitations of currently available
theories. The technique is based upon a simultaneous random
flights simulation of diffusive trajectories and integration of the
time-dependent Schro¨dinger equation and is easily extended to
spurs containing more than one radical pair.

The main purpose of the present paper is to report the
extension of the random flights simulation technique to model
polarizations in spurs containing more than one pair of radicals.
The radical pair mechanism (RPM)26,27states that polarizations
arise through the simultaneous operation of the exchange and
Zeeman or hyperfine interactions. The simulation method has
therefore been applied to systems of two radical pairs in an
external magnetic field. This is a very complicated problem,
and in order to keep the analysis manageable at this stage we
have only included exchange and Zeeman interactions. Such a
model is not totally unrealistic; there are experimental systems
where coherent effects are dominated by the Zeeman interac-
tion.13 Inclusion of the hyperfine interaction introduces no new
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methodological problems but makes interpretation of the results
much more difficult and will be addressed in a future publica-
tion. Dipolar interactions may also be important in generating
polarizations in radical-ion pairs28 but have not been included
in the model. Spin relaxation has also been excluded at this
stage. The motivation for choosing such a system is to
investigate whether any information about the initial distribution
of radicals or their initial spin state can be gleaned from the
polarizations. One of the major problems in radiation chemistry
is that experimental kinetic data yield only a limited amount of
information about the properties of the spur. It has been
shown29,30 that scavenging experiments basically contain the
same information as the kinetic results. It is therefore hoped
that coherent spin effects may provide additional insight into
the initial spatial distributions and spin states.

The following section presents details of the random flights
simulation method. Section 3 introduces our application of the
SLE, which provides a stringent test for the simulation method
and the results of the comparison for a single pair of radicals.
The results of simulations for a system of two radical pairs are
presented in section 4.

2. Monte Carlo Random Flights Simulation

The Monte Carlo random flights simulation method used to
investigate coherent phenomena in spurs is essentially identical
to that described in the previous paper.8 Although the simulation
technique has been described previously, a short re´suméwill
be given here for the sake of completeness.

There are two parts to the simulation, namely the diffusive
motion of the particles and their spin state. The diffusive
trajectories of the particles are simulated using the normal
Brownian dynamics approach of integrating a stochastic dif-
ferential equation of the form31,32

whereR is the position vector,D is the diffusion coefficient,F
is any force acting on the particle, dt is the time step, and dW3

represents the random Brownian force on the particle (three-
dimensional white noise). In the absence of forces acting on
the particles, the simulation uses the discretized form of eq 1,
namely

where the variables are unchanged but the white noise is
replaced by a 3-vector of normal random numbers of mean zero
and variance one.33 It is assumed that there are no spin-
dependent effects on the diffusion process, in that the separation-
dependent exchange interaction,J(r), does not affect the relative
diffusion (apart from reaction) and only operates when the
particles approach to within∼1.0 nm. This assumption34 is valid
provided thatp|J(r)| < kBT, which holds for all interparticle
separations attainable during the simulation.

The spin state of the radicals is incorporated into the
simulation by integrating the time-dependent Schro¨dinger equa-
tion as the particles diffuse. The spin Hamiltonian for the system
contains two terms: the exchange interaction, which depends
on the particle configuration and is therefore constantly and
randomly changing, and the Zeeman interaction with an external
magnetic field, which is time-independent. The spin function
is represented as a vector relative to a particular basis, and the

spin Hamiltonian is then represented as a matrix. Several
different bases are used in the course of the simulation.

The Hamiltonian for the Zeeman interaction with a magnetic
field B is given by35,36

wheregi is theg-factor for the interaction of spinŜj with the
magnetic field (B), which lies along thez-axis, Siz is the
projection of the spin onto thez-axis, andµB is the Bohr
magneton. TheZ-basis is the basis in which the Zeeman
Hamiltonian matrix is diagonal; the basis functions are unam-
biguously labeled by a complete set ofMi and can therefore be
represented|{Mi}〉. The diagonal elements of the Zeeman
Hamiltonian are given by∑igiµiBmi, wheremi is the magnetic
quantum number.

The experimental phenomenon of CIDEP cannot occur
without the exchange interaction, and therefore, the approximate
model of “contact exchange”9 is not sufficient for the purposes
of modeling polarizations.

The exchange Hamiltonian is calculated from the expres-
sion35,37,38

whereŜi andŜj are the electron spins on radical centersi andj,
Ŝ+ andŜ- are the shift operators for each electron spin, andŜiz

and Ŝjz are the projections of each electron spin on thez-axis.
Equation 4 assumes that the exchange interaction is dependent
only upon the interparticle separation and is unaffected by the
relative molecular orientations.34,37-38 Jij(rij) is then given by

whereJ0 is the exchange strength (typically-0.15 to -3.37
ps-1),39 R is the range parameter (typically 10.6-19 nm-1),39

rij is the interparticle separation, andR is the encounter distance
(0.5 nm).

2.1. Method of Integration. The difficulty of integrating the
Schrödinger equation arises because the exchange Hamiltonian
depends on the particle configuration via the interparticle
distances, which change randomly and continuously during the
diffusive evolution of the spur. We have investigated several
integration methods, ranging in complexity from a simple Euler-
type discretization40 to the diagonalization of the spin Hamil-
tonian at each time step. The nonzero time stepsδt must be
short enough to exclude three-body interactions and, more
stringently, to allow the integral of the time-dependent Schro¨-
dinger equation to converge. The effect of changing the time
step has been investigated to determine the longest time step
possible without loss of accuracy; a value of 0.1 ps was used
in the simulations reported here. Although the Euler-type
discretization requires shorter time steps, it is more efficient at
attaining a given level of accuracy than the more complicated
diagonalization approach. Thus, at the end of each time step,
the wave function is updated according to the simple lineariza-
tion35

and then renormalized (since the linearization method does not
conserve probability).

dR ) DF
kBT

dt + x(2D dt) dW3 (1)

δR ) x(2Dδt)N3(0,1) (2)

Ĥz ) ∑
i

µBBŜi ) ∑
i

giµBBŜiz (3)

Hex ) ∑
i>j

- Jij(rij)(2ŜiŜj + 1/2) )

∑
i>j

- Jij(rij)[(Ŝi
+ Ŝj

- + Ŝi
- Ŝj

+) + 2(ŜizŜjz) + 1/2] (4)

Jij(rij) ) J0e
-R(rij-R) (5)

φ(t + δt) ) ψ(t) - iδtĤφ(t) (6)
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2.2. Basis Set.The speed of the simulation depends critically
on the dimension of the spin space used. The previous paper in
this series8 described a method of reducing the size of the basis
and associated operators and matrixes through the use of
permutation group theory. The full spin space for a system of
four radicals is 16-dimensional, but it is possible to reduce the
dimension through the requirements of the conservation of spin.

In the absence of an external magnetic field, bothS andMs

are conserved. Attention is limited to those basis functions with
anMs value of zero, since the spur is constrained to be overall
singlet. The basis and operators are thus reduced to six
dimensions. The basis functions in theZ-basis are|RRââ〉,
|RâRâ〉, |RââR〉, |âRRâ>, |âRâR〉, and |ââRR〉; however, in
the absence of a field further reduction is possible because the
spin Hamiltonian can be expressed in terms of symmetry
elements of theS4 permutation group. The representation
spanned by theZ-basis can therefore be reduced in terms ofS4

irreducible representations (irreps). The symmetry-adaption
indicates that the sixMs ) 0 basis functions above span the
irreps A1, E, and T1, which are one-, two- and three-dimensional,
respectively, and correspond to the subspaces labeled by the
spin quantum number of the spur, i.e.,S ) 2, S ) 0, andS )
1, respectively.

If an external magnetic field is applied, the value ofS is no
longer conserved so this further reduction is not possible.
However, it is still convenient to use the symmetry-adapted basis
functions (hereafter denotedg), which are constructed from the
Z-basis functions using projection operators for the appropriate
irreps. Thus, theg-basis function spanning the one-dimensional
A1 irrep is totally symmetric. The choice of functions to span
theS) 0 (two-dimensional) subspace is not unique, since there
are threeg-basis functions in which two pairs are singlet
correlated. Each of these singlet vectors has a complementary
vector (which is a combination of the other two) lying in the
same space; the choice of orthogonal vector pair to span theS
) 0 space is arbitrary and results in no loss of generality. The
basis functions spanning theS) 1 (three-dimensional) subspace
are mutually orthogonal and also orthogonal to theS ) 0 and
S ) 2 basis functions.

The six basis functions, expressed as vectors in theZ-basis,
are therefore the following:

In the simulation, the wave function is represented in theg-basis
and is initially located in theS ) 0 subspace (spanned byg2

andg3).

The exchange Hamiltonian can be expressed in terms of
operations of the permutation group, but the same is not true
of the Zeeman Hamiltonian becauseS is not conserved. The
conservation ofMs andS by the exchange interaction and the
mixing of S subspaces by the Zeeman interaction is apparent
in the blocked forms of the Hamiltonian operators. The exchange
Hamiltonian (in theg-basis) is of the form

wherea ) (J12 + J34), a′ ) (J12 - J34), b ) (J13 + J24), b′ )
(J13 - J24), c ) (J14 + J23), andc′ ) (J14 - J23). EachSsubspace
is represented by a block in the Hamiltonian matrix.

In contrast to the exchange Hamiltonian, the six-dimensional
Zeeman Hamiltonian (in theg-basis) is blocked on the opposite
diagonal and mixes the spin subspaces:

g1 ) 1

x6
(RRââ + RâRâ + RââR + âRRâ + âRâR +

ââRR) ) 1

x6
(1,1,1,1,1,1)

g2 ) 1
2
(RâRâ - RââR - âRRâ + âRâR) ) 1

2
(0,1,-1,-

1,1,0)

g3 ) 1

x12
(2RRââ - RâRâ - RââR - âRRâ - âRâR +

2ââRR) ) 1

x12
(2,-1,-1,-1,-1,2)

g4 ) 1

x2
(RRââ - ââRR)

1

x2
(1,0,0,0,0,-1)

g5 ) 1

x2
(RâRâ - âRâR) ) 1

x2
(0,1,0,0,-1,0)

g6 ) 1

x2
(RââR - âRRâ) - 1

x2
(0,0,1,-1,0,0)

TABLE 1: Representation of the S-Basis Functions in
Terms of the g- and Z-Basis Functions Defined Previously

S-function
label

representation
in g-basis

representation
in Z-basis

s(1) ) Sa
12 (0,

1

x2
,0,0,

1
2
,
1
2) 1

x2
(0,1,0,-1,0,0)

s(2) ) Sb
12 (0,

-1

x2
,0,0,

1
2
,
1
2) 1

x2
(0,0,1,0,-1,0)

s(3) ) Sa
13 (0,

1

2x2
,
x3

2x2
,
1
2
,0,

1
2) 1

x2
(1,0,0,-1,0,0)

s(4) ) Sb
13 (0,

-1

2x2
,
x-3

2x2
,
1
2
,0,

1
2) 1

x2
(0,0,1,0,0,-1)

s(5) ) Sa
14 (0,

-1

2x2
,
x3

2x2
,
1
2
,
1
2
,0) 1

x2
(1,0,0,0,-1,0)

s(6) ) Sb
14 (0,

1

2x2
,
-x3

2x2
,
1
2
,
1
2
,0) 1

x2
(0,1,0,0,0,-1)

s(7) ) Sa
23 (0,

-1

2x2
,
x3

2x2
,
1
2
,
-1
2

,0) 1

x2
(1,-1,0,0,0,0)

s(8) ) Sb
23 (0,

1

2x2
,
-x3

2x2
,
1
2
,
-1
2

,0) 1

x2
(0,0,0,0,1,-1)

s(9) ) Sa
24 (0,

1

2x2
,
x3

2x2
,
1
2
,0,

-1
2 ) 1

x2
(1,0,-1,0,0,0)

s(10) ) Sb
24 (0,

-1

2x2
,
-x3

2x2
,
1
2
,0,

-1
2 ) 1

x2
(0,0,0,1,0,-1)

s(11) ) Sa
34 (0,

1

x2
,0,0,

1
2
,
-1
2 ) 1

x2
(0,1,-1,0,0,0)

s(12) ) Sb
34 (0,

-1

x2
,0,0,

1
2
,
-1
2 ) 1

x2
(0,0,0,1,-1,0)

(
a + b + c 0 0 0 0 0

)0 1/2(b + c) - a -x3/2(b - c) 0 0 0
0 -x3/2(b - c) 1/2(b + c) - a 0 0 0
0 0 0 a c′ b′
0 0 0 c′ b a′
0 0 0 b′ a′ c
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The signs in the parentheses refer to the sign of thegµBB factor
for each electron in the spur.

2.3. Encounter and Reaction.The diffusive motion of the
particles is modeled by the normal random flights method, and
the Hamiltonians and wave function are updated at the end of
each time step. At this point, it is also determined whether any
pairs have encountered, either by proximity or via an interpolat-
ing bridging process41,42 which allows for encounter and
reseparation during the time step. The inner boundary is located
at an interparticle separation of 0.5 nm; the probability of
reaction at this separation is calculated by comparing a random
numberU (uniform on (0,1]) with the singlet probability of the
encountering pair. To calculate this probability, the singlet part
of the wave function must be projected out using the appropriate
projection operator for the encountering pair. In the case of a
singlet encounter, the wave function must be projected into the
subspace in which the encounter pair is singlet. This subspace
is two-dimensional since the wave function of the disjoint pair
is spanned by the vectors|Râ〉 and |âR〉, or, equivalently,|S〉
and|T0〉. It is possible to define a set of 12 functions labeledS,
of which there are 2 for each singlet-correlated encounter pair.
The representation of theseS-functions, in terms of theg-basis
functions defined previously and in terms of the originalZ-basis,
is shown in Table 1. For example, the functionSa

14 describes a
spin state in which the particles labeled “1” and “4” are singlet-
correlated and the disjoint pair (particles “2” and “3”) have spins
R andâ, respectively, while inSb

14 the disjoint pair have spins
â andR, respectively.

The projection operators are constructed from theseS-
functions by combining the outer products of each singlet-pair
vector. Thus,P̂12 ) (Sa

12(Sa
12)T + Sb

12(Sb
12)T). Once the nature

of the encounter has been decided, the wave function is
transformed by application of the projection operator and
renormalized, effectively collapsing the wave function onto a
pure singlet or triplet state. The reactive particles are removed
from the system and their interactions zeroed. After a singlet
encounter, the population of theS ) 2 subspace is necessarily
zero, since it is only possible to populate a quintet state if the
system contains two triplet pairs. Thus, after a singlet encounter,
the wave function for the remaining pair must remain in theS
) 0 andS) 1 subspaces for the rest of its lifetime. To enforce
this condition, the appropriate projection operator is reapplied
to the wave function after it is updated at the end of each time
step. This precaution ensures that rounding errors cannot
repopulate the quintet subspace.

2.4. Calculation of Polarizations.Electronic polarizations
are calculated from the wave function (in theZ-basis) at
predefined times during the simulation, using

wheren is the number of spins,msj is the magnetic spin quantum
number of spinj, andzj is the element of the wave function
vector corresponding to spinj; the summation runs over all the
radicals present.

3. Test of the Simulation Method: Stochastic Liouville
Equation

In contrast to the Monte Carlo random flights simulation
approach, the stochastic Liouville equation treats the system as
an ensemble average and therefore requires a density matrix to
be used37,38,43because of the loss of coherence between different
realizations. The density matrix contains all possible information
about the physical observables of the system, since its elements
are quadratic combinations of the elements of the wave function
vector,44 z; i.e., Fij ) 〈zj*zi〉. The SLE is an equation of motion
for a generalized density matrixFij ) c(r)〈zj*zi|r〉, wherec(r) is
the probability density function of the configuration and the
expectation is conditioned on the configuration.

The SLE simultaneously includes spin dynamics and interac-
tions (via a spin Hamiltonian,Ĥ) and the classical stochastic
motion of the spin-carrying particles, represented by a diffusion
operator,∇2. Details of spin-selective reaction, scavenging,
relaxation, etc., may also be included.37,38,43The basic SLE is
of the form

whereD′ is the relative diffusion coefficient for the radical pair.
Recognizing the spherical symmetry of the density matrixF

and substitutingF ) σ/r produces an equation of the form

which ignores any angular dependence in the exchange interac-
tion and diffusive motion and is a function of the spatial variable
r and the spins of the radical pair only.

The space is discretized, and a finite-difference method is
employed to solve the SLE numerically in a standard way;45

the Crank-Nicolson method46 was chosen for its unconditional
numerical stability.

All singlet-containing elements of the density matrix are set
to zero at the inner boundary condition (at r) R), which is
absorbing in nature. The element|TT〉 is reflected according to

The spin part of the SLE depends on the Liouville operator,
which is conventionally a commutator, constructed from the
appropriate spin space for the system. For the simplest single-
pair system, containing two electrons and no nuclei, the Zeeman
basis is two-dimensional (|Râ>, |âR>). The density matrix,
which is 2× 2, can then be represented as a four-dimensional
vector, and the Liouville operator is represented as a 4× 4
matrix, dependent onr through the exchange interactionJ(r).
Since reaction is modeled using boundary conditions, these must
be applied in the encounter (S-T) basis. It is therefore
convenient to set up the whole numerical simulation of the SLE
in this basis.

(
0 0 0 1/x3(++- -) 1/x3(+ - + -) 1/x3(+ - - +)T

)0 0 0 0 1/x2(+ - + -) -1/x2(+ - - +)
0 0 0 2/x6(+ + - -) -1/x6(+ - + -) -1/x6(+ - - +)
1/x3(+ + - -) 0 2/x6(+ + - -) 0 0 0

1/x3(+ - + -) 1/x2(+ - + -) -1/x2(+ - + -) 0 0 0

1/x3(+ - - +) -1/x2(+ - - +) -1/x6(+ - - +) 0 0 0

P ) ∑
j)1

2n

msj|zj|2 (7)

∂F(r,t)
∂t

) D′∇2F(r,t) + i[F(r,t),Ĥ] (8)

dσ
dt

) D
d2σ
dr2

+ i[σ,Ĥ] (9)

∂σ
∂r |r)R

-
σ(R)

R
) 0 (10)
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3.1. Results for a Single-Pair Spur.The SLE provides a
stringent test of the Monte Carlo random flights technique for
a single radical pair.

Figure 1 shows the electron polarizations for a spur containing
two electron spins only. The particles are labeled “A” and “B”
and have the characteristics of a hydrogen atom (gH ) 2.002)
and hydroxyl radical (gOH ) 2.024) respectively but without
the hyperfine interaction of the H atom or the spin relaxation
of OH•. The hyperfine interaction and spin relaxation will be
included in the model in the future. The system is sufficiently
complex that, at the present time, the aim is to isolate coherent
effects arising from the exchange and Zeeman interactions alone.
The spur is initially in a singlet state, the initial separation of
the pair is 1.0 nm, the relative diffusion coefficient is 1.0×
10-8 m2 s-1 (D(A) ) D(B) ) 0.5 × 10-8 m2 s-1), and the
magnetic field strength is 1.0 T.

It is immediately obvious that there is very good agreement
between the simulation results and the SLE calculation, sug-
gesting that use of the random flights technique is justified.

Each SLE calculation takes approximately 10 min of CPU
time on an IBM RS/6000 390H workstation and requires∼3
MB of memory. Although this memory requirement is well
within the normal operating limits of the workstation, it should
be pointed out that the system we are considering is a minimal
basis set for a single radical pair. Increasing the size of the basis
by including one nuclear spin increases the memory require-
ments to∼12 MB for a single calculation.

Polarizations are harder to obtain in Monte Carlo simulations
than stochastic Liouville calculations because the Monte Carlo
method considers one particular trajectory per realization, with
many realizations required for the results to have statistical
significance, whereas the stochastic Liouville calculation consid-
ers an ensemble average. This means that the simulation method
is cpu-expensive. A typical simulation of 100 000 realizations
for a radical pair with a minimal basis set takes∼ 10 h on an
IBM RS/6000 390H workstation (and requires only∼ 300 kB
of memory). However, simulation is the only option for systems
where the SLE cannot be set up, e.g., two-pair spur or
nondiffusive motion.

There are very large fluctuations in the polarizations from
one realization to the next; frequently the standard deviation of
the polarization can be 10 times larger than the expectation.
Polarizations are usually very small, representing only a slight
deviation from Boltzmann distributions. Polarizations arising

from a single realization of the simulation may be far larger
than those produced at the end of 105 independent realizations.
The standard error for an average 105 realizations is typically
∼3%, but the standard deviation for a single realization is 300
times larger than this.

4. Extension of the MCRF Simulation Method to a
Two-Pair Spur

The simulation technique is readily extended in theory to
model a two-pair spur. The main difficulty in modeling a larger
system lies in the rapid increase in the dimensionality of the
basessthe state space of a spur is 2n-dimensional, wheren is
the number of spins in the spur. The associated increase in
matrix size is reflected in the cpu-time required to simulate the
spur.

We have used the extended simulation method to investigate
the effects of changing various parameters on the modeled
polarizations. The four particles in the spur are labeled “A”
(particles 1 and 3) and “B” (particles 2 and 4) and, as for the
single-pair system, have the sameg-factors as in section 3.1.
The particles are initially placed on the vertexes of a tetrahedron.
In particular, we have investigated the effects of changing the
initial size of the tetrahedron, the initial spin state of the spur,
the diffusion coefficients of the particles, the exchange strength
and range parameters, and the magnetic field strength. The
coherent nature of CIDEP may suggest that the process by which
polarizations develop is dependent solely upon the Zeeman
interaction (and thus the external magnetic field). However, this
is an oversimplistic view: it is the combination of the exchange
interaction operating within eachS subspace and the Zeeman
interaction operating betweenS subspaces that generates
polarizations. Removal of one or other of these interactions
results in an unpolarized system. Increasing the strength of the
magnetic field, the range of the exchange interaction, and the
length of time spent at small separations all produce larger
polarizations, while simulating the spur in the “contact ex-
change” (CE) limit5 unsurprisingly does not produce polariza-
tions at all.

The initial spin states for a two-pair spur can be expressed
in terms of the basis functions|SS〉 and (3)-1/2 (|T+1T+1〉 - |T0T0〉
+ |T-1T-1〉).6 These same spin states exist for any combination
of radical pairs in the spur. If the spin correlations are between
the pairs of radicals labeled 1-2 and 3-4, these spin states
correspond to the basis functionsg2 (“sa”) and g3 (“ta”),
respectively (see section 2.2).

Figure 2 shows the simulated polarizations of radicals
escaping recombination for a two-pair spur initially in the “sa”
spin state (A-B singlet-correlated pairs). The tetrahedron side
length is 0.75 nm, while the relative diffusion coefficient isD′
) 1.0× 10-8 m2 s-1. The simulations have been performed at
magnetic field strengths of 0.33 T (X-band) and 1.2 T (Q-band).
It can easily be seen that increasing the magnetic field strength
increases the magnitude of the polarizations. The product of
the magnetic field and∆g determines the amount of singlet-
triplet mixing, thus, a larger magnetic field causes a more rapid
removal of the system from its initially unpolarized state into a
superposition of spin states, some of which are preferentially
populated (polarized). Encounters between particles with dif-
ferent g-factors (i.e. A-B encounters) are responsible for
generating the polarizations, and the magnitude of the polariza-
tions for each initial spin state is therefore correlated to some
extent with the probability of the first encounter between an
A-B radical pair being singlet in character. This point is
illustrated in Figure 2 for the initial spin state “ta” (A-B triplet-

Figure 1. Comparison of the predicted polarizations from the random
flights simulation and the SLE for a single pair initially in a singlet
spin state. The magnetic field strength is 1.0 T, the initial separation is
1.0 nm, andD′ ) 1.0× 10-8 m2 s-1. The polarizations are represented
by the solid lines for the simulation and by the dashed lines for the
SLE.

4450 J. Phys. Chem. A, Vol. 103, No. 23, 1999 Bolton and Green



correlated pairs), for which the A-B singlet encounter prob-
ability is smaller (3/8 vs 5/8).8 The correlation between the singlet
encounter probability and the magnitude of the simulated
polarizations is not exact, since the former applies solely to the
first encounter.

The polarizations are observed to oscillate with a regular
frequency under a magnetic field of 1.2 T. The period of the
oscillations (∼3000 ps) is similar to the beat frequency (∆gBµB)
in the Q-band. The maximum time of the simulations precludes
the observation of similar oscillations under an X-band magnetic
field. The oscillations appear in the ensemble average, but their
origin is not clear, since they have not been observed in any
single realizations.

At long times, the polarizations attain a steady level, and the
sign of the polarization on a particular radical center is found
to be the same in all systems under investigation (i.e. for all
initial spin states, initial configurations, and diffusion coef-
ficients). The adiabatic approximation has been applied to the
system in order to predict the electron polarizations qualitatively.
Of course, the simulation takes place in an adiabatic space since
the spin state and the exchange interaction do not affect the
relative diffusion of the particles, although the spin states
themselves are treated nonadiabatically. Infinitely slow separa-
tion of particles initially disposed at the vertexes of a tetrahedron,
so that the system remains in a stationary state at all times,

allows the energy levels of each state to be plotted as a function
of the particle separation. It is then possible to identify which
states are likely to be occupied, given the initial spin state. The
correlation diagram in Figure 3 indicates that from any initial
spin state in theS ) 0 subspace, the system is correlated with
the |RâRâ> and (unpolarized) “sb” states at large separations.
Although the adiabatic approximation is a gross simplification
of the spur evolution, it does predict the sign of the polarization
on each radical center correctly. The same correlation between
the spin states is found if the tetrahedron is expanded sym-
metrically, withC3V symmetry (faster expansion along oneC3

axis) or withD2d symmetry (faster along oneS4 axis).
Decreasing the diffusion coefficient of the “B” particles to

2.8× 10-9 m2 s-1 produces larger polarizations (Figure 4), since
the slower diffusion allows a longer period of exposure to the
Zeeman and exchange interactions. The singlet and triplet
subspaces are therefore mixed to a greater extent.

The trends exhibited in the previous figures are similar but
less marked for systems where the initial interparticle separations
are sampled from a Gaussian distribution of distances withσ
) 0.63 nm, due to the increased separation between the particles
and the averaging inherent in such a distribution. Figure 5 shows
the simulated electron polarizations for systems initially in the
“sa” and “ta” spin states at magnetic field strengths of 0.33 and
1.2 T, with D′ ) 1.0 × 10-8 m2 s-1.

If the initial wave function is a random superposition of basis
functions from theS) 0 subspace, the simulated polarizations
are intermediate in magnitude compared to the correlated spin

Figure 2. Comparison of the polarizations predicted by the random
flights simulation for a two-pair spur initially in spin state “sa” (A-B
singlets) and “ta” (A-B triplets). The particles are initially disposed
on the vertexes of a tetrahedron of edge length 0.75 nm, andD′ ) 1.0
× 10-8 m2 s-1. The effect of changing the magnetic field strength on
the polarizations is shown: the X-band (0.33 T) results are represented
by the solid (electrons 1 and 3) and dashed (electrons 2 and 4) lines,
while the Q-band (1.2 T) results are represented by the dotted (electrons
1 and 3) and dot-dashed (electrons 2 and 4) lines.

Figure 3. Correlation diagram in the adiabatic approximation for a
tetrahedron distorted with tetrahedral symmetry, showing how a spin
state initially located in theS) 0 subspace is correlated with the “sb”
and RâRâ states at large separations. This enables the prediction of
the sign of the polarization: positive for electrons 1 and 3; negative
for electrons 2 and 4. The solid lines represent theS) 0 subspace, the
dashed lines theS) 1 subspace, and the dotted line theS) 2 subspace.
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states. This is not unexpected, since randomizing the spin state
is equivalent to removing the spin correlations.

Figure 6 shows the long-time (at 104 ps) electron polarizations
as a function of the angle theta (θ), where the initial wave
function in theS) 0 subspace is given byΨ0 ) (cosθ, sinθ),
where θ ) 0° represents the spin state “sa” (A-B singlet-
correlated radical pairs 1-2, 3-4), θ ) 90° ) “ta” (A -B
triplet-correlated radical pairs 1-2, 3-4), θ ) 60° ) “sb” (A-
A, B-B singlet-correlated radical pairs 1-3, 2-4), θ ) 330°
) “tb” (A -A, B-B triplet-correlated radical pairs 1-3, 2-4),
θ ) 120° ) “sc” (A-B singlet-correlated radical pairs 1-4,
2-3), andθ ) 30° ) “tc” (A -B triplet-correlated radical pairs
1-4, 2-3). The trend is periodic and symmetric about each
spin state, that is, the magnitudes of the polarizations for a
particular spin state are identical (within the random error of
the simulation) to those predicted for the same state differing
only by a change of sign.

There is a large variation in the magnitude of the simulated
polarizations with the initial spin state, whereby the polarizations
predicted for the spin state “sb” are 40%-50% smaller than
those for “tb”. The largest polarizations are found when the A
+ B reaction yield is highest, since they are generated by an
A-B pair after the first pair has reacted. An A-A or B-B
encounter tends to kill any polarization that has developed on
the radicals of the encountering pair; the pair may be equally
and oppositely polarized on the radical centers, but this produces
a total polarization for each species (A or B) of zero. If an A-B
pair is polarized, however, the individual polarizations will not

cancel each other out, so that the total polarization for each
species is not zero but identical to the individual values.

Figure 4. Comparison of the polarizations predicted by the random
flights simulation for a two-pair spur initially in spin state “sa” (A-B
singlets) and “ta” (A-B triplets). The particles are initially disposed
on the vertexes of a tetrahedron of edge length 0.75 nm, and D′ )
0.78× 10-8 m2 s-1. The details are as for Figure 2.

Figure 5. Comparison of the polarizations predicted by the random
flights simulation for a two-pair spur initially in spin state “sa” (A-B
singlets) and “ta” (A-B triplets). The particles are initially located at
the vertexes of a tetrahedron of edge length 0.75 nm with the positions
approximated by Gaussian distributions ofσ ) 0.63 nm, andD′ ) 1.0
× 10-8 m2 s-1. Details are as for Figure 2.

Figure 6. Variation of the electron polarizations predicted by the
random flights simulation as a function of the angleθ. The initial wave
function (in theS) 0 subspace) is given byψ0 ) (cosθ, sinθ), where
θ ) 0° represents the spin state “sa” (A-B singlet-correlated radical
pairs 1-2, 3-4), θ ) 90° ) “ta” (A -B triplet-correlated radical pairs
1-2, 3-4), θ ) 60° ) “sb” (A-A, B-B singlet-correlated radical
pairs 1-3, 2-4), θ ) 330° ) “tb” (A -A, B-B triplet-correlated radical
pairs 1-3, 2-4), θ ) 120° ) “sc” (A-B singlet-correlated radical
pairs 1-4, 2-3), andθ ) 30° ) “tc” (A -B triplet-correlated radical
pairs 1-4, 2-3). The magnetic field strength is 0.33 T, andD′ ) 1.0
× 10-8 m2 s-1. The solid lines represent the polarization on electron 1,
the dashed lines those for electron 2, the dotted lines those for electron
3, and the dot-dashed lines those for electron 4.
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It can be concluded from the results presented above that it
is possible to derive information about the initial spin state of
the system from the simulated polarizations. By changing the
size of the initial tetrahedron, we have investigated whether it
is also possible to draw conclusions about the initial spatial
distribution of the particles. Figure 7 shows the simulated
polarizations for a system initially in the “sa” spin state, under
a magnetic field of 0.33 T, at initial tetrahedron sizes of 0.75,
1.2, and 1.65 nm. These distances were chosen to vary the
relative magnitudes of the exchange and Zeeman interactions.
At a separation of 0.75 nm, the exchange interaction between
a radical pair predominates over the Zeeman interaction, while
the reverse is true when the particles are much further (1.65
nm) apart. The intermediate value of 1.2 nm was chosen as the
separation at which the exchange and Zeeman interactions are
of comparable strength. At first sight it appears that the
magnitude of the polarizations does reflect the initial distribution.
However, normalizing the polarizations to the number of
surviving particles in the system seems to remove this effect.
The same conclusion applies ifD′ ) 0.78× 10-8 m2 s-1 (“B”
particles diffuse more slowly) and with a larger magnetic field
(Q-band, 1.2 T). The results for a system with the particle
positions sampled from a Gaussian distribution (σ ) 0.63 nm),
shown in Figure 8, provide even stronger evidence against the
original premise, as might be expected. Unfortunately, it does
not seem possible to derive spatial information from the
simulated polarizations in a manner similar to the spin informa-
tion.

Another important point arising from these results is that the
simulated polarizations for a two-pair spur are very different to
those obtained in a single-pair system. To investigate whether
the polarizations in a two-pair system could be explained in
terms of pairwise interactions, or if more complicated multibody
effects were involved, we ran a series of single realizations of
the spur evolution. The simulated polarizations in an individual
trajectory may be far larger than those produced by averaging
105 independent realizations. The polarizations may also have
the “wrong” sign according to the adiabatic approximation,
which is not expected to be accurate under conditions of
prolonged exposure to the exchange and Zeeman interactions
and repeated reencounters. A single realization for a two-pair
spur initially in the “sa” spin state is shown in Figure 9. The
magnetic field strength was 1.2 T andD′ ) 1.0× 10-8 m2 s-1.
The upper plot represents the polarizations while the lower plot
illustrates the interparticle separations for the reactive and
disjoint pairs. This allows changes in the polarizations to be
identified with specific encounters. At short times, polarizations
are induced in a complicated way on all particles in close
proximity. Close encounters during which the exchange interac-
tion is operating allow polarizations to develop, while collisions
destroy the polarizations of the encountering pair. In Figure 9,
the first reaction (B+ B, between particles 2 and 4) occurs
extremely quickly at∼1.8 ps, at which time some of the negative
polarization on these particles is transferred to the slightly
positively polarized particle 3, with a concurrent change in the
polarization on particle 1. The disjoint pair are less than 1.0
nm away from the reacting pair when the reaction occurs.

Figure 7. Comparison of the polarizations predicted by the random
flights simulation for a two-pair spur initially in spin state “sa” (A-B
singlets). The particles are initially disposed at the vertexes of tetrahedra
of edge length 0.75, 1.2, and 1.65 nm, the magnetic field strength is
0.33 T, andD′ ) 1.0 × 10-8 m2 s-1. The solid lines represent the
electron polarizations predicted for r0 ) 0.75 nm, the dashed lines the
polarizations for r0 ) 12 nm, and the dotted lines those forr0 ) 1.65
nm.

Figure 8. Comparison of the polarizations predicted by the random
flights simulation for a two-pair spur initially in spin state “sa” (A-B
singlets). The particles are initially located at the vertexes of tetrahedra
of edge length 0.75, 1.2, and 1.65 nm with the positions approximated
by Gaussian distributions ofσ ) 0.63 nm. The magnetic field strength
is 0.33 T, andD′ ) 1.0× 10-8 m2 s-1. The details are as for Figure 7.
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Subsequently, the polarization on the remaining particles is
steady, equal and opposite, since the particles are separating
and have∆g ) 0. The particles diffuse back into close proximity
(<1.0 nm) at∼80 ps and∼500 ps (not shown), as a result of
which the polarizations are reversed and then increase in
magnitude.

In the radical pair mechanism, the Zeeman mechanism cannot
produce polarizations for an identical pair of radicals, since∆g
is zero. However, Figure 10 clearly shows that the polarizations
of a single A-A pair remaining after a reaction can be altered
by an encounter. This behavior is possible for a pair whose wave
function is a superposition of|S〉 and |T0〉 states, since the
coefficients of |Râ〉 and |âR〉 are different. Under these
conditions, the polarizations change under the influence of the
exchange interaction. Figure 10 illustrates this phenomenon for
a system initially in an “sb” spin state (A-A, B-B singlet
pairs), withD′ ) 1.0 × 10-8 m2 s-1 and a magnetic field of
1.2 T. The polarizations on particles 1 and 3 evolve in a regular
and symmetric manner following the earlier reaction between
particles 2 and 4 (at∼6 ps). At early times, four-body effects
are responsible for the growth in polarization on all particles.
Repeated triplet encounters produce almost identical positive
polarization on particles 3 and 4 during their prolonged
proximity. The negative polarization on particle 2 then appears
to be transferred to particle 3 when the reaction between particles
2 and 4 occurs. A further close (∼0.65 nm) encounter of the
remaining pair at∼13 ps reverses the sign of the polarization
on each center, before they react∼5 ps later. The total

polarization for each species is zero after the first (B+ B)
reaction, since the polarization on the remaining A particles is
equal and opposite.

The effect of particular encounters on thetotal polarization
for each species is shown in Figure 11, again for a single
realization of a system initially in the “sb” spin state withD′ )
1.0 × 10-8 m2 s-1 and a magnetic field of 1.2 T. The
development of polarization at short times (<40 ps) can be
attributed initially to the close proximity of the 1-2 (A-B)
pair, with a sharp increase as the other A-B pair diffuses
together and then reacts (at∼45 ps). At the point of reaction,
the polarizations on the reacting particles are transferred to the
disjoint pair, changing the sign of the polarization on these
radicals in the process. Subsequently, the system remains
polarized by the 1-2 pair, whose individual polarizations have
the “wrong” sign according to the adiabatic approximation. This
pair diffuses back to a separation where the exchange interaction
begins to dominate (<1.0 nm), which reverses the sign of the
polarizations.

An important point to note is the effect of exposure to the
Zeeman and exchange interactions on the magnitude of the
simulated polarizations. An extremely rapid reaction (cf. Figures
9, 10, and 12) allows insufficient time for the generation of
large polarizations, which are consequently 10 or 20 times
smaller than those predicted in Figure 11.

Figure 12 illustrates the generation of polarizations from
multibody effects at very short times, when the particles are in

Figure 9. Single realization of the simulated spur evolution for a two-
pair spur initially in an “sa” spin state (A-B singlets). The magnetic
field strength is 1.2 T, andD′ ) 1.0 × 10-8 m2 s-1. The upper plot
depicts the simulated polarizations, with the solid line representing
electron 1, the dashed line electron 2, the dotted line electron 3, and
the dot-dashed line electron 4. The lower plot depicts the interparticle
distances for the reacting pair (electrons 1 and 3; solid line) and the
disjoint pair (electrons 2 and 4; dashed line).

Figure 10. Single realization of the simulated spur evolution for a
two-pair spur initially in an “sb” spin state (A-A, B-B singlets). The
magnetic field strength is 1.2 T, andD′ ) 1.0 × 10-8 m2 s-1. The
upper plot depicts the simulated polarizations, with the solid line
representing electron 1, the dashed line electron 2, the dotted line
electron 3, and the dot-dashed line electron 4. The lower plot depicts
the interparticle distances for the reacting pair (electrons 1 and 3; solid
line), the disjoint pair (electrons 2 and 4; dashed line), the 3-4 pair
(dotted line), and the 2-3 pair (dot-dashed line).
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very close proximity. The system is initially in a “ta” spin state
(A-B triplet-correlated pairs), at a magnetic field strength of
1.2 T and withD′ ) 1.0 × 10-8 m2 s-1. Prior to the (A+ B)
reaction between particles 3 and 4 at∼3.5 ps, all four radicals
are within 1.0 nm of each other and, thus, interacting predomi-
nantly via the exchange reaction. Unreactive encounters at∼2
and∼2.8 ps causing abrupt changes in the polarizations could
be attributable to any of the radical pairs, none of which are
sufficiently distant to be disregarded.

In conclusion, we have applied our modified Monte Carlo
simulation technique to a variety of idealized systems containing
two spin-correlated pairs of radicals in an attempt to determine
what information about the initial state of the spur can be
obtained from electron polarizations. While it does seem possible
to derive information about the initial spin state of the spur,
there seems to be no information about the particle distributions.

Additionally, we conclude that it is not sufficient to analyze
multipair spurs solely in terms of pairwise interactions. The
value ofMs is conserved throughout the evolution of the spur:
if polarizations on encountering radicals are not equal and
opposite, their polarization is transferred onto the remaining
radicals (the disjoint pair), since the polarizations always sum
to zero. Changes in the simulated polarizations at longer times
occur mainly in discrete two-body encounters (after the first
rapid reaction has occurred). Multibody effects can therefore
be analyzed in terms of successive two-body encounters,
although the whole spin state must always be considered.

However, at short times polarizations arise as a result of the
close proximity of all four particles and must be described
properly using the trajectories of all the radicals.
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